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Abstract— The M-band wavelet decomposition, which is a direct 
generalization of the standard 2-band wavelet decomposition is 
applied to the problem of an unsupervised segmentation of different 
texture images. Orthogonal and linear phase M-band wavelet 
transform is used to decompose the image into MXM channels. 
Various sections of these bandpass sections are combined to obtain 
different scales and orientations in the frequency plane. Texture 
features are extracted by applying each bandpass section to a 
nonlinear transformation and computing the measure of energy in a 
window around each pixel of the filtered texture images. Then the 
window size is adaptively selected depending on the frequency content 
of the images. Unsupervised texture segmentation derived by 
combination of different clustering and feature extraction techniques 
is compared. 
 

Keywords— Discrete Wavelet Transform, M-band WT, Discrete 
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I. INTRODUCTION 

   Computer Vision encompasses an important task of 
texture analysis. Various applications like image retrieval 
based on content, medical diagnosis, satellite imaging make 
use of texture analysis. The idea of segmenting a given 
image into meaningful segments based on the criterion of 
textural cue is referred to as "Texture Segmentation". In this 
paper we investigate the segmentation accuracy obtained by 
M-Band wavelet transform  and Wavelet packet approaches 
and compare the obtained results with traditional Discrete 
Wavelet Transform. Mausumi Acharyya and Malay Kundu 
[1] have analyzed texture segmentation technique using M 
band which is a generalization of standard 2 band wavelet 
decomposition. They used multichannel filtering approach 
which seems attractive as it exploits variations in dominant 
sizes and orientations of various textures. Different filtering 
techniques like isotropic filters [2] discrete cosine transform 
(DCT) [3] Gabor filters [4] for successful application of 
multichannel filtering are studied. Use of Multi Resolution 
Analysis (MRA) technique for multiresolution signal 
decomposition by Mallat  [5] was done successfully. He 
used Quadrature Mirror Filters (QMF) to relate description 
at various scales of decomposition of the embedded 
subspace representation. Standard wavelets suffer from a 
serious drawback that they are not suitable for the analysis 
of high frequency signals with relatively narrow bandwidth. 
So the main theme of this paper is to use the M-Band 
decomposition scheme which yields better segmentation 
accuracies. The octave band wavelet decomposition 
indicate finer frequency resolution in the low-frequency 
region than in the high-frequency region. Studies indicate 
that the texture features are more dominant in the 
intermediate frequency band. 

The system set-up for the texture segmentation algorithm 
is demonstrated in Fig. 1. The image is first wavelet 

transformed into MXM channels by applying the M-band 
transform, without downsampling which gives an 
overcomplete representation of the image. Then different 
combinations of these bandpass sections are taken to obtain 
different scales and orientations in the frequency plane. In 
the second step, a local energy estimator consisting of a 
nonlinear operation  and a smoothing filter, is applied to the 
various combinations of these bandpass areas. The area of 
the smoothing window is determined dynamically based on 
the spectral frequency content of the images. These steps 
give the texture features that can be classified successfully. 
The use of overcomplete wavelet representation removes 
the problem of inaccurate edge localization of the texture 
elements and discrepancies in detection of boundaries of 
different texture classes.  

The organization of the paper is as follows. Section 2 
briefly explains the wavelet transform and M-band wavelet 
transform. Section 3 presents the analysis of the 
multichannel filtering technique used in the proposed 
texture segmentation scheme, extraction of features and 
further discusses the merging of these extracted features. In 
section 4 we give experimental results and in section 5 we 
give conclusion of the present work. 

II. WAVELET TRANSFORM AND M-BAND WT 

A. Discrete Wavelet Transform 

    The wavelet transform is a signal decomposition onto a 
set of basis functions called wavelets. The wavelets are 
obtained from a single-prototype function by scalings and 
shifts [5,6]. This is the standard 2-band wavelet transform. 
Wavelet transform of a 1-D signal f (x) is defined as, 

Wƒ a (b) = ʃ ƒ(x) ψ*a ,b (x) dx            (1) 

 
Fig. 1. Proposed System for Texture Segmentation 
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where ߰ is the mother wavelet and a and b are dilation and 
translation parameters respectively. The discrete wavelet 

expansion of a signal f(x) ϵ l2 (l2 is the space of square 
summable functions) is given as, 
(ݔ)݂                                                                                                          	= 	∑ఢ௭ܵ,	߶,	(ݔ) 	+ ∑ୀଵ 		∑∈	 ݀,	߰,(ݔ)       (2) 
 
where ߶  and ߰  are the scaling and wavelet functions, 
respectively and are associated with the analyzing (or 
synthesizing) filters h and g. dj,k's are the wavelet 
coefficients and SJ,k 's are the expansion coefficients of the 
coarser signal approximation of  f (x). 

B. M-Band Wavelets 

    The M-band wavelets zoom in onto narrowband high-
frequency components of a signal and give better energy 
compaction than 2-band wavelets [7]. There are M-1 
wavelets, ߰ i(x), i=1,2,...,M-1 associated with the scaling 
function. For any function  f (x) ϵ L2 (R), it can be shown 
that, 
(ݔ)݂  = ∑ ∑ 	∑ 	ఢ௭ < ƒ(ݔ)߰,,	(ݔ) > ߰,,	(ݔ)ఢ௭ୀெିଵୀଵ   (3)              
                                                                                             
The ߰i.j.k (x) functions are obtained by scaling and shifting 
the corresponding wavelet 	߰ (x): 
 																			߰,,(ݔ) = ݔ	ܯ)	߰		/ଶܯ	 − ݇)                    (4) 

where i = 1,2,……M-1, k ϵ Z, j ϵ Z 
Given a scaling function ߰ 0(x) in L2(R), the wavelet 
functions are defined as, 
 															߰(ݔ) = ∑	ܯ√ ℎ	(݇)߰	(ݔܯ − ݇)ୀேିଵୀ          (5) 

C. Multiresolution  Analysis 

   The scaling function and the M-1 wavelet functions also 
define a multiresolution analysis [8]. A multiresolution 
analysis is a sequence of approximation spaces for L2(R). If 
the space spanned by the translates of ߰i(x) for fixed j and k ∈  Z is defined by Wi.j = Span { 	߰,,  }, then it can be 
shown that, 
,ܹ																							  	= 	⨁ୀெିଵ				 ܹ,ିଵ		                                (6) 

 																								lim→ஶ ,ܹ	 	=          ଶ(ܴ)                                   (7)ܮ
 
Thus the ܹ,	 spaces form a multiresolution space for L2(R). 
An important aspect of M-band wavelets is that a given 
scaling filter h0 specifies a unique ߰0(x) and consequently a 
unique multiresolution analysis.  

III. TEXTURE FEATURE EXTRACTION 

    The feature extraction method involves multichannel 
filtering, followed by a nonlinear stage and then by a 
smoothing filter which constitute the local energy estimator 
as shown in Fig. 1. The objectives of filtering and that of 
the local energy estimator are to transform the edges 
between textures into detectable discontinuities. 

A.  M-Band Wavelet Filters 

   The filter bank in essence is a set of bandpass filters with 
frequency and orientation specific properties. In the 
filtering stage we make use of orthogonal and linear phase 
M-band wavelet transform [1] to decompose the texture 
images into MXM channels, corresponding to different 
direction and resolutions. In this work we have obtained the 
M2-channel 2-D separable transform by the tensor product 
of M-band 1-D wavelet filters but without downsampling, 
which are denoted by ߰i,j for i, j=1,2,3,4 with M=4. The i,jth 
resolution cell is obtained via the filtering step Hi,j= ߰i,j ߰*i,j 
for i, j=1,2,3,4 with M=4. The decomposition of the image 
into MXM (=16) channels is illustrated in Fig. 2. 

 
Fig. 2. Frequency bands corresponding to decomposition 

filters 
We can perform edge detection by using 2-D filtering as 
follows: 
 

• Horizontal edges: are detected by highpass 
filtering 

               on columns and lowpass filtering on rows. 
• Vertical edges: are detected by lowpass filtering 

               on columns and highpass filtering on rows. 
• Diagonal edges: are detected by highpass filtering 

               on columns and highpass filtering on rows. 
• Horizontal-diagonal edges: are detected by 

highpass                                                 
        filtering on columns and lowpass filtering on rows. 
• Vertical-diagonal edges: are detected by lowpass                
        filtering on columns and highpass filtering on 
rows. 

The decomposition filters  are formed as follows for 
different directions in increasing level of resolutions. 
 
Horizontal direction: 
Filthor1 = H12, 
Filthor2 = H12 + H13, 
Filthor3 = H12 + H13 + H14 + H24. 
 
Vertical direction: 
Filtver1 = H21 , 
Filtver2 = H21 + H31 , 
Filtver3 = H21 + H31 + H41 + H42 . 
 
Diagonal direction: 
Filtdiag1 = H22 , 
Filtdiag2 = H22 + H33 , 
Filtdiag3 = H22 + H33 + H44 . 
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Horizontal-diagonal direction: 
Filthdiag1 = H12 , 
Filthdiag2 = H12 + H23 , 
Filthdiag3 = H12 + H23 + H34 . 
 
Vertical-diagonal direction: 
Filtvdiag1 = H21 , 
Filtvdiag2 = H21 + H32 , 
Filtvdiag3 = H21 + H32 + H43 . 
 
These filter outputs basically give a measure of signal 
energies at different directions and scales, the 
corresponding filtered images are denoted by ܨு ܨ ,   etc. 
for i=1,2,3 as shown in Fig. 3. 
 
B.  Local energy estimator 
   The purpose of the estimator is to transmit the strong 
bandpass frequency components resulting in a high-
constant gray value and weaker frequency components into 
a low- constant gray value. The most popular magnitude 
operation    | . | is used. One reason for choosing this 
nonlinear operator is that it is parameter free, meaning it is 
independent of the dynamic range of the input image and 
also of the filter amplification. The nonlinear transform is 
succeeded by a Gaussian low-pass (smoothing) filter of the 
form 

 
Fig 3. Block diagram of the algorithm used 

 																		ℎீ	(ݔ, (ݕ 	= 	 ଵ√ଶஈఙ ݁ି(ଵ ଶఙమ)(௫మା	௬మ)⁄                    (8) 

where, ߪ defines the spatial extent of the averaging filter. 
Formally, the feature image ݐܽ݁ܨ(x, y) corresponding to 
filtered image ܨ(x, y) is given by, 
,ݔ)ݐܽ݁ܨ  (ݕ 	= 	∑ Γ(ܨ(ܽ, ܾ)	ℎீ	(ݔ − ܽ, ݕ − ܾ))(,)ఢீೣ  (9) 

 
where k=ܪ  ,	 ܸ etc., Γ(.)  is the nonlinear function and ܩ௫௬ 
is a GXG window centered at pixel with coordinates (x, y). 
The size G of the smoothing or the averaging window in Eq. 
(9 ) is an important parameter. More reliable measurement 
of texture feature demands larger window areas. Also, more 
definite localization of region boundaries requires smaller 
windows. Another important aspect is that, Gaussian 
weighted windows are naturally preferable over unweighted 
windows, as they result in more definite localization of 
texture boundaries, since averaging blurs the boundaries 
between textured regions. 
 

C.  Integration of Feature Images 
   Let us assume that there are K texture categories C1,...Ck, 
present in the image. If our texture features are capable of 
distinguishing these categories then the patterns belonging 
to each category will form a cluster in the feature space 
which is compact and different from clusters corresponding 
to other texture categories. Pattern clustering algorithms are 
ideal modes for forming such clusters in the feature space. 
Segmentation algorithm takes a set of features as input and 
assign a class for each pixel. Fundamentally this can be 
considered as a multidimensional data clustering problem. 
Texture segmentation algorithms can be divided into two 
categories: supervised and unsupervised segmentation [9]. 
 
D.  Algorithm 
   The texture segmentation algorithm based on M-band 
wavelet decomposition is illustrated in Fig. 3. 
This algorithm consist of the following steps: 
 The input image is first decomposed into MXM 

channels by wavelet analysis without downsampling. 
We have used an eight tap 4-band wavelet, so in all 
we get 16 decomposition channels which means the 
feature set comprises of 16 feature elements. Out of 
these 16 features we ignore the low frequency channel 
feature corresponding to ܪଵଵ and FHD1 and FVD1. 

 Since these are nothing but FH1 and FV1, respectively. 
So only13 features are left. 

 These outputs pass through the nonlinear operation 
followed by smoothing which form the feature images   ݐܽ݁ܨ. 

 We get a matrix of size NXM, where N is the number 
of feature elements in each vector (13 in this case) and 
M is the total data size (the total number of pixels in 
the input image). The features are normalized between 
[0,1] along each column of the feature matrix and 
subjected to EM clustering algorithm. This step gives 
us the class map corresponding to the composite 
texture image. 

IV. EXPERIMENTAL RESULTS 

   We have applied our texture segmentation algorithm to 
several type of texture images along with different 
clustering algorithms, in order to demonstrate the 
performance of our algorithm. Table 1 shows the accuracy 
of our segmentation on fig 4 for different feature extraction 
techniques applied in combination with various clustering 
approaches for 10 clusters. The Berkeley dataset [10] has 
been taken as the benchmark for the experimentation.  

             Feature  
             Extraction 
Clustering 
Algorithm 

DWT M-Band DWP 

Kmeans 66.9 % 68.4 % 70.4 % 

EM 85.7 % 92.1 % 92 % 

FarthestFirst 59.9 % 59.8 % 62.3 % 

Manhattan Kmeans 76.7 % 78.3 % 81.8 % 
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Fig 4(a). Original image 

 

 
 

Fig 4(b). Segmentation obtained by the proposed method 
employing EM and Discrete Wavelet Packet for 10 clusters. 
 
Experiments are performed on 11 images and graph 
obtained after testing these images on all the above 
algorithms is shown below. 
 

 
 
 
 
 

V. CONCLUSIONS 

In this paper, a new algorithm for adaptive unsupervised 
segmentation of texture images was presented. The process 
can be divided in three principal steps: transform, feature 
extraction and clustering. The transform selected is capable 
of obtaining details of middle-high frequency, where the 
most significant information of a texture appears. For 
clustering, different algorithms like simple Kmeans, 
Manhattan Kmeans,FarthestFirst and Excitation 
Maximisation are used. All algorithms were tested on 
different type of images and the average accuracy obtained 
with simple Kmeans is 70.65%, with Manhattan Kmeans is 
79.18%, with Farthest First is 60.02% and with EM is 
91.09%. Experimental results presented prove the 
efficiency of EM method. Several comparisons with other 
existing methods in literature are made.  
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